BRCA1 and BRCA2 tumor suppressors protect against endogenous acetaldehyde toxicity

نویسندگان

  • Eliana Mc Tacconi
  • Xianning Lai
  • Cecilia Folio
  • Manuela Porru
  • Gijs Zonderland
  • Sophie Badie
  • Johanna Michl
  • Irene Sechi
  • Mélanie Rogier
  • Verónica Matía García
  • Ankita Sati Batra
  • Oscar M Rueda
  • Peter Bouwman
  • Jos Jonkers
  • Anderson Ryan
  • Bernardo Reina-San-Martin
  • Joannie Hui
  • Nelson Tang
  • Alejandra Bruna
  • Annamaria Biroccio
  • Madalena Tarsounas
چکیده

Maintenance of genome integrity requires the functional interplay between Fanconi anemia (FA) and homologous recombination (HR) repair pathways. Endogenous acetaldehyde, a product of cellular metabolism, is a potent source of DNA damage, particularly toxic to cells and mice lacking the FA protein FANCD2. Here, we investigate whether HR-compromised cells are sensitive to acetaldehyde, similarly to FANCD2-deficient cells. We demonstrate that inactivation of HR factors BRCA1, BRCA2, or RAD51 hypersensitizes cells to acetaldehyde treatment, in spite of the FA pathway being functional. Aldehyde dehydrogenases (ALDHs) play key roles in endogenous acetaldehyde detoxification, and their chemical inhibition leads to cellular acetaldehyde accumulation. We find that disulfiram (Antabuse), an ALDH2 inhibitor in widespread clinical use for the treatment of alcoholism, selectively eliminates BRCA1/2-deficient cells. Consistently, Aldh2 gene inactivation suppresses proliferation of HR-deficient mouse embryonic fibroblasts (MEFs) and human fibroblasts. Hypersensitivity of cells lacking BRCA2 to acetaldehyde stems from accumulation of toxic replication-associated DNA damage, leading to checkpoint activation, G2/M arrest, and cell death. Acetaldehyde-arrested replication forks require BRCA2 and FANCD2 for protection against MRE11-dependent degradation. Importantly, acetaldehyde specifically inhibits in vivo the growth of BRCA1/2-deficient tumors and ex vivo in patient-derived tumor xenograft cells (PDTCs), including those that are resistant to poly (ADP-ribose) polymerase (PARP) inhibitors. The work presented here therefore identifies acetaldehyde metabolism as a potential therapeutic target for the selective elimination of BRCA1/2-deficient cells and tumors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PALB2 Links BRCA1 and BRCA2 in the DNA-Damage Response

BRCA1 and BRCA2 are often mutated in familial breast and ovarian cancer. Both tumor suppressors play key roles in the DNA-damage response. However, it remains unclear whether these two tumor suppressor function together in the same DNA-damage response pathway. Here, we show that BRCA1 associates with BRCA2 through PALB2/FANCN, a major binding partner of BRCA2. The interaction between BRCA1 and ...

متن کامل

BRCA1 and BRCA2: Cancer Risk and Genetic Testing

• BRCA1 and BRCA2 are human genes that belong to a class of genes known as tumor suppressors. Mutation of these genes has been linked to hereditary breast and ovarian cancer (see Question 1). • A woman's risk of developing breast and/or ovarian cancer is greatly increased if she inherits a deleterious (harmful) BRCA1 or BRCA2 mutation. Men with these mutations also have an increased risk of bre...

متن کامل

Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins.

Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defect...

متن کامل

A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability

Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mech...

متن کامل

IN SILICO INVESTIGATION OF THE EFFECT OF LYCOPENE ON THE EXPRESSION OF BRCA1 AND BRCA2 INHIBITOR GENES IN PROSTATE CANCER

Background & Aims: Cancer is a genetic disease that results from mutations in genes that control cell activities. Prostate cancer is one of the most common types of cancers in men. Surgery, radiation therapy, hormone therapy, and chemotherapy are used to treat this disease. These treatments have numerous side effects after treatment, including impotence along with the high cost of treatment. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017